|
'use strict'; |
|
|
|
//module.exports = earcut; |
|
|
|
function earcut(data, holeIndices, dim) { |
|
|
|
dim = dim || 2; |
|
|
|
var hasHoles = holeIndices && holeIndices.length, |
|
outerLen = hasHoles ? holeIndices[0] * dim : data.length, |
|
outerNode = linkedList(data, 0, outerLen, dim, true), |
|
triangles = []; |
|
|
|
if (!outerNode) return triangles; |
|
|
|
var minX, minY, maxX, maxY, x, y, size; |
|
|
|
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); |
|
|
|
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox |
|
if (data.length > 80 * dim) { |
|
minX = maxX = data[0]; |
|
minY = maxY = data[1]; |
|
|
|
for (var i = dim; i < outerLen; i += dim) { |
|
x = data[i]; |
|
y = data[i + 1]; |
|
if (x < minX) minX = x; |
|
if (y < minY) minY = y; |
|
if (x > maxX) maxX = x; |
|
if (y > maxY) maxY = y; |
|
} |
|
|
|
// minX, minY and size are later used to transform coords into integers for z-order calculation |
|
size = Math.max(maxX - minX, maxY - minY); |
|
} |
|
|
|
earcutLinked(outerNode, triangles, dim, minX, minY, size); |
|
|
|
return triangles; |
|
} |
|
|
|
// create a circular doubly linked list from polygon points in the specified winding order |
|
function linkedList(data, start, end, dim, clockwise) { |
|
var i, last; |
|
|
|
if (clockwise === (signedArea(data, start, end, dim) > 0)) { |
|
for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last); |
|
} else { |
|
for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last); |
|
} |
|
|
|
if (last && equals(last, last.next)) { |
|
removeNode(last); |
|
last = last.next; |
|
} |
|
|
|
return last; |
|
} |
|
|
|
// eliminate colinear or duplicate points |
|
function filterPoints(start, end) { |
|
if (!start) return start; |
|
if (!end) end = start; |
|
|
|
var p = start, |
|
again; |
|
do { |
|
again = false; |
|
|
|
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) { |
|
removeNode(p); |
|
p = end = p.prev; |
|
if (p === p.next) return null; |
|
again = true; |
|
|
|
} else { |
|
p = p.next; |
|
} |
|
} while (again || p !== end); |
|
|
|
return end; |
|
} |
|
|
|
// main ear slicing loop which triangulates a polygon (given as a linked list) |
|
function earcutLinked(ear, triangles, dim, minX, minY, size, pass) { |
|
if (!ear) return; |
|
|
|
// interlink polygon nodes in z-order |
|
if (!pass && size) indexCurve(ear, minX, minY, size); |
|
|
|
var stop = ear, |
|
prev, next; |
|
|
|
// iterate through ears, slicing them one by one |
|
while (ear.prev !== ear.next) { |
|
prev = ear.prev; |
|
next = ear.next; |
|
|
|
if (size ? isEarHashed(ear, minX, minY, size) : isEar(ear)) { |
|
// cut off the triangle |
|
triangles.push(prev.i / dim); |
|
triangles.push(ear.i / dim); |
|
triangles.push(next.i / dim); |
|
|
|
removeNode(ear); |
|
|
|
// skipping the next vertice leads to less sliver triangles |
|
ear = next.next; |
|
stop = next.next; |
|
|
|
continue; |
|
} |
|
|
|
ear = next; |
|
|
|
// if we looped through the whole remaining polygon and can't find any more ears |
|
if (ear === stop) { |
|
// try filtering points and slicing again |
|
if (!pass) { |
|
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, size, 1); |
|
|
|
// if this didn't work, try curing all small self-intersections locally |
|
} else if (pass === 1) { |
|
ear = cureLocalIntersections(ear, triangles, dim); |
|
earcutLinked(ear, triangles, dim, minX, minY, size, 2); |
|
|
|
// as a last resort, try splitting the remaining polygon into two |
|
} else if (pass === 2) { |
|
splitEarcut(ear, triangles, dim, minX, minY, size); |
|
} |
|
|
|
break; |
|
} |
|
} |
|
} |
|
|
|
// check whether a polygon node forms a valid ear with adjacent nodes |
|
function isEar(ear) { |
|
var a = ear.prev, |
|
b = ear, |
|
c = ear.next; |
|
|
|
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear |
|
|
|
// now make sure we don't have other points inside the potential ear |
|
var p = ear.next.next; |
|
|
|
while (p !== ear.prev) { |
|
if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && |
|
area(p.prev, p, p.next) >= 0) return false; |
|
p = p.next; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
function isEarHashed(ear, minX, minY, size) { |
|
var a = ear.prev, |
|
b = ear, |
|
c = ear.next; |
|
|
|
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear |
|
|
|
// triangle bbox; min & max are calculated like this for speed |
|
var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x), |
|
minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y), |
|
maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x), |
|
maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y); |
|
|
|
// z-order range for the current triangle bbox; |
|
var minZ = zOrder(minTX, minTY, minX, minY, size), |
|
maxZ = zOrder(maxTX, maxTY, minX, minY, size); |
|
|
|
// first look for points inside the triangle in increasing z-order |
|
var p = ear.nextZ; |
|
|
|
while (p && p.z <= maxZ) { |
|
if (p !== ear.prev && p !== ear.next && |
|
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && |
|
area(p.prev, p, p.next) >= 0) return false; |
|
p = p.nextZ; |
|
} |
|
|
|
// then look for points in decreasing z-order |
|
p = ear.prevZ; |
|
|
|
while (p && p.z >= minZ) { |
|
if (p !== ear.prev && p !== ear.next && |
|
pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && |
|
area(p.prev, p, p.next) >= 0) return false; |
|
p = p.prevZ; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// go through all polygon nodes and cure small local self-intersections |
|
function cureLocalIntersections(start, triangles, dim) { |
|
var p = start; |
|
do { |
|
var a = p.prev, |
|
b = p.next.next; |
|
|
|
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) { |
|
|
|
triangles.push(a.i / dim); |
|
triangles.push(p.i / dim); |
|
triangles.push(b.i / dim); |
|
|
|
// remove two nodes involved |
|
removeNode(p); |
|
removeNode(p.next); |
|
|
|
p = start = b; |
|
} |
|
p = p.next; |
|
} while (p !== start); |
|
|
|
return p; |
|
} |
|
|
|
// try splitting polygon into two and triangulate them independently |
|
function splitEarcut(start, triangles, dim, minX, minY, size) { |
|
// look for a valid diagonal that divides the polygon into two |
|
var a = start; |
|
do { |
|
var b = a.next.next; |
|
while (b !== a.prev) { |
|
if (a.i !== b.i && isValidDiagonal(a, b)) { |
|
// split the polygon in two by the diagonal |
|
var c = splitPolygon(a, b); |
|
|
|
// filter colinear points around the cuts |
|
a = filterPoints(a, a.next); |
|
c = filterPoints(c, c.next); |
|
|
|
// run earcut on each half |
|
earcutLinked(a, triangles, dim, minX, minY, size); |
|
earcutLinked(c, triangles, dim, minX, minY, size); |
|
return; |
|
} |
|
b = b.next; |
|
} |
|
a = a.next; |
|
} while (a !== start); |
|
} |
|
|
|
// link every hole into the outer loop, producing a single-ring polygon without holes |
|
function eliminateHoles(data, holeIndices, outerNode, dim) { |
|
var queue = [], |
|
i, len, start, end, list; |
|
|
|
for (i = 0, len = holeIndices.length; i < len; i++) { |
|
start = holeIndices[i] * dim; |
|
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; |
|
list = linkedList(data, start, end, dim, false); |
|
if (list === list.next) list.steiner = true; |
|
queue.push(getLeftmost(list)); |
|
} |
|
|
|
queue.sort(compareX); |
|
|
|
// process holes from left to right |
|
for (i = 0; i < queue.length; i++) { |
|
eliminateHole(queue[i], outerNode); |
|
outerNode = filterPoints(outerNode, outerNode.next); |
|
} |
|
|
|
return outerNode; |
|
} |
|
|
|
function compareX(a, b) { |
|
return a.x - b.x; |
|
} |
|
|
|
// find a bridge between vertices that connects hole with an outer ring and and link it |
|
function eliminateHole(hole, outerNode) { |
|
outerNode = findHoleBridge(hole, outerNode); |
|
if (outerNode) { |
|
var b = splitPolygon(outerNode, hole); |
|
filterPoints(b, b.next); |
|
} |
|
} |
|
|
|
// David Eberly's algorithm for finding a bridge between hole and outer polygon |
|
function findHoleBridge(hole, outerNode) { |
|
var p = outerNode, |
|
hx = hole.x, |
|
hy = hole.y, |
|
qx = -Infinity, |
|
m; |
|
|
|
// find a segment intersected by a ray from the hole's leftmost point to the left; |
|
// segment's endpoint with lesser x will be potential connection point |
|
do { |
|
if (hy <= p.y && hy >= p.next.y) { |
|
var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); |
|
if (x <= hx && x > qx) { |
|
qx = x; |
|
if (x === hx) { |
|
if (hy === p.y) return p; |
|
if (hy === p.next.y) return p.next; |
|
} |
|
m = p.x < p.next.x ? p : p.next; |
|
} |
|
} |
|
p = p.next; |
|
} while (p !== outerNode); |
|
|
|
if (!m) return null; |
|
|
|
if (hx === qx) return m.prev; // hole touches outer segment; pick lower endpoint |
|
|
|
// look for points inside the triangle of hole point, segment intersection and endpoint; |
|
// if there are no points found, we have a valid connection; |
|
// otherwise choose the point of the minimum angle with the ray as connection point |
|
|
|
var stop = m, |
|
mx = m.x, |
|
my = m.y, |
|
tanMin = Infinity, |
|
tan; |
|
|
|
p = m.next; |
|
|
|
while (p !== stop) { |
|
if (hx >= p.x && p.x >= mx && |
|
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) { |
|
|
|
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential |
|
|
|
if ((tan < tanMin || (tan === tanMin && p.x > m.x)) && locallyInside(p, hole)) { |
|
m = p; |
|
tanMin = tan; |
|
} |
|
} |
|
|
|
p = p.next; |
|
} |
|
|
|
return m; |
|
} |
|
|
|
// interlink polygon nodes in z-order |
|
function indexCurve(start, minX, minY, size) { |
|
var p = start; |
|
do { |
|
if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, size); |
|
p.prevZ = p.prev; |
|
p.nextZ = p.next; |
|
p = p.next; |
|
} while (p !== start); |
|
|
|
p.prevZ.nextZ = null; |
|
p.prevZ = null; |
|
|
|
sortLinked(p); |
|
} |
|
|
|
// Simon Tatham's linked list merge sort algorithm |
|
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html |
|
function sortLinked(list) { |
|
var i, p, q, e, tail, numMerges, pSize, qSize, |
|
inSize = 1; |
|
|
|
do { |
|
p = list; |
|
list = null; |
|
tail = null; |
|
numMerges = 0; |
|
|
|
while (p) { |
|
numMerges++; |
|
q = p; |
|
pSize = 0; |
|
for (i = 0; i < inSize; i++) { |
|
pSize++; |
|
q = q.nextZ; |
|
if (!q) break; |
|
} |
|
|
|
qSize = inSize; |
|
|
|
while (pSize > 0 || (qSize > 0 && q)) { |
|
|
|
if (pSize === 0) { |
|
e = q; |
|
q = q.nextZ; |
|
qSize--; |
|
} else if (qSize === 0 || !q) { |
|
e = p; |
|
p = p.nextZ; |
|
pSize--; |
|
} else if (p.z <= q.z) { |
|
e = p; |
|
p = p.nextZ; |
|
pSize--; |
|
} else { |
|
e = q; |
|
q = q.nextZ; |
|
qSize--; |
|
} |
|
|
|
if (tail) tail.nextZ = e; |
|
else list = e; |
|
|
|
e.prevZ = tail; |
|
tail = e; |
|
} |
|
|
|
p = q; |
|
} |
|
|
|
tail.nextZ = null; |
|
inSize *= 2; |
|
|
|
} while (numMerges > 1); |
|
|
|
return list; |
|
} |
|
|
|
// z-order of a point given coords and size of the data bounding box |
|
function zOrder(x, y, minX, minY, size) { |
|
// coords are transformed into non-negative 15-bit integer range |
|
x = 32767 * (x - minX) / size; |
|
y = 32767 * (y - minY) / size; |
|
|
|
x = (x | (x << 8)) & 0x00FF00FF; |
|
x = (x | (x << 4)) & 0x0F0F0F0F; |
|
x = (x | (x << 2)) & 0x33333333; |
|
x = (x | (x << 1)) & 0x55555555; |
|
|
|
y = (y | (y << 8)) & 0x00FF00FF; |
|
y = (y | (y << 4)) & 0x0F0F0F0F; |
|
y = (y | (y << 2)) & 0x33333333; |
|
y = (y | (y << 1)) & 0x55555555; |
|
|
|
return x | (y << 1); |
|
} |
|
|
|
// find the leftmost node of a polygon ring |
|
function getLeftmost(start) { |
|
var p = start, |
|
leftmost = start; |
|
do { |
|
if (p.x < leftmost.x) leftmost = p; |
|
p = p.next; |
|
} while (p !== start); |
|
|
|
return leftmost; |
|
} |
|
|
|
// check if a point lies within a convex triangle |
|
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) { |
|
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && |
|
(ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && |
|
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; |
|
} |
|
|
|
// check if a diagonal between two polygon nodes is valid (lies in polygon interior) |
|
function isValidDiagonal(a, b) { |
|
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && |
|
locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b); |
|
} |
|
|
|
// signed area of a triangle |
|
function area(p, q, r) { |
|
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); |
|
} |
|
|
|
// check if two points are equal |
|
function equals(p1, p2) { |
|
return p1.x === p2.x && p1.y === p2.y; |
|
} |
|
|
|
// check if two segments intersect |
|
function intersects(p1, q1, p2, q2) { |
|
if ((equals(p1, q1) && equals(p2, q2)) || |
|
(equals(p1, q2) && equals(p2, q1))) return true; |
|
return area(p1, q1, p2) > 0 !== area(p1, q1, q2) > 0 && |
|
area(p2, q2, p1) > 0 !== area(p2, q2, q1) > 0; |
|
} |
|
|
|
// check if a polygon diagonal intersects any polygon segments |
|
function intersectsPolygon(a, b) { |
|
var p = a; |
|
do { |
|
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && |
|
intersects(p, p.next, a, b)) return true; |
|
p = p.next; |
|
} while (p !== a); |
|
|
|
return false; |
|
} |
|
|
|
// check if a polygon diagonal is locally inside the polygon |
|
function locallyInside(a, b) { |
|
return area(a.prev, a, a.next) < 0 ? |
|
area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : |
|
area(a, b, a.prev) < 0 || area(a, a.next, b) < 0; |
|
} |
|
|
|
// check if the middle point of a polygon diagonal is inside the polygon |
|
function middleInside(a, b) { |
|
var p = a, |
|
inside = false, |
|
px = (a.x + b.x) / 2, |
|
py = (a.y + b.y) / 2; |
|
do { |
|
if (((p.y > py) !== (p.next.y > py)) && (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x)) |
|
inside = !inside; |
|
p = p.next; |
|
} while (p !== a); |
|
|
|
return inside; |
|
} |
|
|
|
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; |
|
// if one belongs to the outer ring and another to a hole, it merges it into a single ring |
|
function splitPolygon(a, b) { |
|
var a2 = new Node(a.i, a.x, a.y), |
|
b2 = new Node(b.i, b.x, b.y), |
|
an = a.next, |
|
bp = b.prev; |
|
|
|
a.next = b; |
|
b.prev = a; |
|
|
|
a2.next = an; |
|
an.prev = a2; |
|
|
|
b2.next = a2; |
|
a2.prev = b2; |
|
|
|
bp.next = b2; |
|
b2.prev = bp; |
|
|
|
return b2; |
|
} |
|
|
|
// create a node and optionally link it with previous one (in a circular doubly linked list) |
|
function insertNode(i, x, y, last) { |
|
var p = new Node(i, x, y); |
|
|
|
if (!last) { |
|
p.prev = p; |
|
p.next = p; |
|
|
|
} else { |
|
p.next = last.next; |
|
p.prev = last; |
|
last.next.prev = p; |
|
last.next = p; |
|
} |
|
return p; |
|
} |
|
|
|
function removeNode(p) { |
|
p.next.prev = p.prev; |
|
p.prev.next = p.next; |
|
|
|
if (p.prevZ) p.prevZ.nextZ = p.nextZ; |
|
if (p.nextZ) p.nextZ.prevZ = p.prevZ; |
|
} |
|
|
|
function Node(i, x, y) { |
|
// vertice index in coordinates array |
|
this.i = i; |
|
|
|
// vertex coordinates |
|
this.x = x; |
|
this.y = y; |
|
|
|
// previous and next vertice nodes in a polygon ring |
|
this.prev = null; |
|
this.next = null; |
|
|
|
// z-order curve value |
|
this.z = null; |
|
|
|
// previous and next nodes in z-order |
|
this.prevZ = null; |
|
this.nextZ = null; |
|
|
|
// indicates whether this is a steiner point |
|
this.steiner = false; |
|
} |
|
|
|
// return a percentage difference between the polygon area and its triangulation area; |
|
// used to verify correctness of triangulation |
|
earcut.deviation = function (data, holeIndices, dim, triangles) { |
|
var hasHoles = holeIndices && holeIndices.length; |
|
var outerLen = hasHoles ? holeIndices[0] * dim : data.length; |
|
|
|
var polygonArea = Math.abs(signedArea(data, 0, outerLen, dim)); |
|
if (hasHoles) { |
|
for (var i = 0, len = holeIndices.length; i < len; i++) { |
|
var start = holeIndices[i] * dim; |
|
var end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; |
|
polygonArea -= Math.abs(signedArea(data, start, end, dim)); |
|
} |
|
} |
|
|
|
var trianglesArea = 0; |
|
for (i = 0; i < triangles.length; i += 3) { |
|
var a = triangles[i] * dim; |
|
var b = triangles[i + 1] * dim; |
|
var c = triangles[i + 2] * dim; |
|
trianglesArea += Math.abs( |
|
(data[a] - data[c]) * (data[b + 1] - data[a + 1]) - |
|
(data[a] - data[b]) * (data[c + 1] - data[a + 1])); |
|
} |
|
|
|
return polygonArea === 0 && trianglesArea === 0 ? 0 : |
|
Math.abs((trianglesArea - polygonArea) / polygonArea); |
|
}; |
|
|
|
function signedArea(data, start, end, dim) { |
|
var sum = 0; |
|
for (var i = start, j = end - dim; i < end; i += dim) { |
|
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); |
|
j = i; |
|
} |
|
return sum; |
|
} |
|
|
|
// turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts |
|
earcut.flatten = function (data) { |
|
var dim = data[0][0].length, |
|
result = {vertices: [], holes: [], dimensions: dim}, |
|
holeIndex = 0; |
|
|
|
for (var i = 0; i < data.length; i++) { |
|
for (var j = 0; j < data[i].length; j++) { |
|
for (var d = 0; d < dim; d++) result.vertices.push(data[i][j][d]); |
|
} |
|
if (i > 0) { |
|
holeIndex += data[i - 1].length; |
|
result.holes.push(holeIndex); |
|
} |
|
} |
|
return result; |
|
}; |